Nonlinear least squares and super resolution
نویسندگان
چکیده
منابع مشابه
Nonlinear Least Squares and Super Resolution
Digital super resolution is a term used to describe the inverse problem of reconstructing a high resolution image from a set of known low resolution images, each of which is shifted by subpixel displacements. Simple models assume the subpixel displacements are known, but if the displacements are not known, then nonlinear approaches must be used to jointly find the displacements and the reconstr...
متن کاملLearning-based super resolution using kernel partial least squares
a r t i c l e i n f o In this paper, we propose a learning-based super resolution approach consisting of two steps. The first step uses the kernel partial least squares (KPLS) method to implement the regression between the low-resolution (LR) and high-resolution (HR) images in the training set. With the built KPLS regression model, a primitive super-resolved image can be obtained. However, this...
متن کاملNonlinear Least-squares Estimation
The paper uses empirical process techniques to study the asymptotics of the least-squares estimator for the fitting of a nonlinear regression function. By combining and extending ideas of Wu and Van de Geer, it establishes new consistency and central limit theorems that hold under only second moment assumptions on the errors. An application to a delicate example of Wu’s illustrates the use of t...
متن کاملNonlinear least squares and regularization
I present and discuss some general ideas about iterative nonlinear output least-squares methods. The main result is that, if it is possible to do forward modeling on a physical problem in a way that permits the output (i.e., the predicted values of some physical parameter that could be measured) and the rst derivative of the same output with respect to the model parameters (whatever they may be...
متن کاملLinear Least Squares Estimates and Nonlinear Means
The consistency and asymptotic normality of a linear least squares estimate of the form (X,X)-X’Y when the mean is not X/I is investigated in this paper. The least squares estimate is a consistent estimate of the best linear approximation of the true mean function for the design chosen. The asymptotic normality of the least squares estimate depends on the design and the asymptotic mean may not ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2008
ISSN: 1742-6596
DOI: 10.1088/1742-6596/124/1/012019